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Abstract – Real-time monitoring of mental workload (MWL) is critical for designing adaptive human-machine 
systems. This study introduces a subject-independent and task-independent EEG classifier trained on spectral power 
ratios (delta, theta, alpha, beta) from frontal, parietal, and occipital regions. Using a controlled arithmetic task with 
labeled difficulty levels (easy/hard), a Gaussian Naive Bayes model achieved 75.4% accuracy (LOSOCV) in 
distinguishing MWL states. Validated in a driving simulator, the model was highly sensitive to task difficulties and 
detected higher MWL in urban (overload) vs. rural (underload) scenarios (p < 0.05), aligning with NASA-TLX 
subjective ratings. Temporal analysis revealed declining MWL over time in both scenarios, reflecting cognitive 
adaptation, followed by a mental fatigue rise in the cumulative effect of prolonged cognitive effort during the overload 
scenario. The framework eliminates the need for individualized and task calibration, offering a scalable solution for 
real-world applications like automotive safety and virtual reality. By bridging controlled lab settings and naturalistic 
environments, this work advances EEG-based MWL monitoring for adaptive systems in high-stakes domains like 
driving and aviation. 
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Introduction  

Mental workload (MWL) refers to the mental effort or 
resources required to handle the cognitive demands of 
a task. As task difficulty increases, cognitive demands 
also increase, resulting in a higher MWL (Eggemeier 
et al., 1991). Evaluating MWL is crucial for designing 
human-machine interfaces that enhance comfort, 
satisfaction, efficiency, and safety in respective 
working and operating environments. Adjusting task 
demands to promote operator safety, health, and 
productivity is essential to avoid mismatches between 
cognitive resource capacity and task demands (Young 
et al., 2015; Rubio et al., 2004). In this study, we aim 
to assess the temporal patterns of mental workload in 
real-time, using an unconstrained 
Electroencephalogram (EEG) classifier, which 
provides insights into the mechanisms of learning and 
adaptation and the progression of mental fatigue over 
time. 

Monitoring MWL in real-time is essential not only for 
advancing technology development, as it directly 
influences the design of systems such as driving 

simulators, gaming environments, and virtual reality 
platforms, but also for monitoring purposes, where 
maintaining safety and performance of individuals is 
essential. Assessing MWL allows developers to tailor 
user experiences that align with cognitive demands, 
ensuring systems are intuitive, engaging, and 
effective. This understanding is particularly valuable in 
applications where user performance and safety are 
critical. For instance, in driving simulators, insights into 
MWL can guide the development of adaptive training 
environments that respond to users' cognitive states. 
Additionally, monitoring MWL in real-time can 
enhance safety features in driving scenarios by 
alerting drivers. Many traffic accidents are associated 
with mental workload, as high MWL can slow reaction 
times and reduce accuracy, whereas low MWL can 
result in distractions and inattention (Brookhuis & de 
Waard, 2010; Makishita & Matsunaga, 2008; Paxion 
et al., 2014).  

Furthermore, the temporal patterns of mental 
workload offer valuable insights. It is closely related to 
learning and mental fatigue. Mental workload 
decreases after a single practice session due to the 
effects of the learning process (Gevins et al., 1997; 
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Jaquess et al., 2018; Brookings et al., 1996; Haufler et 
al., 2000; Kerick et al., 2004). As learning progresses 
and a task becomes more familiar, mental workload 
gradually decreases (Radüntz, 2020). This refinement 
in how mental resources are engaged aligns with Fitts 
and Posner’s model, which describes a transition from 
controlled processing to more automatic processing 
as skills develop, accompanied by a reduction in the 
mental effort required to perform the task (Fitts & 
Posner, 1967). In contrast, prolonged engagement in 
cognitively demanding tasks can lead to mental 
fatigue, which is accompanied by an increase in 
mental workload. In this state, individuals often 
compensate for reduced performance by exerting 
additional effort and reallocating cognitive resources, 
which can, in turn, increase mental workload (Mahdavi 
et al., 2024; Nakagawa et al., 2013). 

There are three primary ways to assess MWL: 
performance-based measures, subjective measures, 
and physiological measures. Performance-based 
measures quantify behavioral metrics, including task 
completion time and error rate. However, they have 
limitations, including a lack of sensitivity to changes in 
mental workload levels. Performance may remain 
consistent even when mental workload increases, 
leading to inaccurate assessments. Subjective 
measures rely on individuals reporting their perceived 
workload using questionnaires like the NASA Task 
Load Index. This method is easy and widely used, but 
does not provide real-time information. Among these, 
physiological measures uniquely offer objective, real-
time assessments of MWL by tracking physiological 
responses, such as heart rate and brain activity, 
without interfering with task performance (Meshkati et 
al., 1995). Between these physiological 
measurements that assess MWL, only the EEG 
accurately reflects workload in real-time, allowing for 
second-by-second measurement (Berka et al. 2007). 
Furthermore, EEG's direct measurement of brain 
activity makes it the most direct indicator of different 
cognitive states among physiological measures 
(Debie et al., 2019). 

EEG & Mental Workload 
There is a well-established body of literature on 
assessing mental workload using EEG. Generally, 
changes in task demands have been shown to 
correspond with alterations in EEG frequencies 
(Charles & Nixon, 2019). Specifically, a decrease in 
alpha band activity in the posterior region has been 
identified as a reliable indicator of higher mental 
workload. Additionally, theta power has been 
observed to increase significantly with greater task 
difficulty, particularly at anterior sites (Gevins et al., 
1997; Smith et al., 1999; Jaquess et al., 2018; Di 
Flumeri et al., 2018; Borghini et al., 2014; Smith & 
Gevins, 2005; Brookings et al., 1996; Wilson, 2002). 
These findings are consistent across a variety of tasks, 
from controlled laboratory settings involving arithmetic 

tasks to real-world environments with aircraft pilots 
and car drivers. This aligns with the understanding that 
alpha activity is inversely related to general arousal 
and attentional processes, while frontal theta power is 
positively associated with working memory 
engagement and conscious control over attention 
(Smith et al., 1999; Jaquess et al., 2018). This 
suggests that, despite differences in task type, mental 
workload relies on a common neural infrastructure 
across diverse tasks. 

In parallel with traditional spectral analysis, recent 
years have seen a growing use of machine learning 
(ML) techniques to estimate mental workload from 
EEG data. These approaches aim to move beyond 
fixed frequency-based heuristics by automatically 
learning patterns from data. A critical challenge in this 
domain is subject dependency and task dependency. 
Most ML models show significantly better performance 
when trained and tested on data from the same 
subject (subject-dependent models), as they can 
exploit individual-specific EEG features (Roy et al., 
2016; Kingphai & Moshfeghi, 2024). However, this 
restricts the general applicability of such models, 
particularly in practical scenarios like driving, where 
pre-training on every new user is infeasible. On the 
other hand, subject-independent models—those 
trained across a group of individuals and tested on 
unseen subjects—often suffer a noticeable drop in 
accuracy due to inter-subject variability in anatomy, 
neural responses, and cognitive strategies (Zheng & 
Lu, 2015; Zhou et al., 2022). This variability is a well-
documented limitation in EEG-based analysis. It 
presents a key difference from traditional methods, 
which often rely on population-level heuristics like 
increased frontal theta or decreased posterior alpha 
without being sensitive to individual-level variability.  

To address this, researchers have explored domain 
adaptation, transfer learning, and personalized 
calibration techniques. For example, approaches that 
combine general features like spectral power ratios 
with data-driven features have shown promise in 
improving cross-subject generalization while 
preserving interpretability (Roy et al., 2016; Zhang et 
al., 2018). Nonetheless, ML-based models still face 
trade-offs between flexibility, transparency, and 
robustness. Unlike traditional EEG metrics that are 
relatively interpretable but less adaptive, ML models 
offer enhanced performance potential but often act as 
black boxes, making them harder to deploy in 
regulated or safety-critical environments like 
automotive settings. 

Contribution 
While personalized models can offer highly accurate 
classifications of cognitive states, their deployment in 
real-world settings is often impractical. This is primarily 
due to the time and resources required to collect 
individualized training data and develop complex 
subject-specific models. In contrast, this study focuses 
on evaluating the reproducibility and sensitivity of the 



DSC 2025 Europe XR Osia et al. 

Stuttgart, 24-26 Sep 2025 - 31 - 

MWL assessment using EEG signals within a subject-
independent and task-independent model applied to 

uncontrolled environments. 

  To this end, we first designed a controlled scenario 
based on an arithmetic task specifically chosen for its 
ability to elicit distinct levels of mental workload. Task 
demands were systematically manipulated to induce 
variations in cognitive load, and participants provided 
subjective ratings of perceived difficulty and effort to 
assist with accurate labeling and model validation. The 
training phase included two defined difficulty levels—
easy and hard—intended to reliably produce differing 
MWL states. While arithmetic tasks and driving differ 
in nature, both reliably engage the working memory 
and attention system. Prior studies (e.g., Gevins et al., 
1997; Borghini et al., 2014) have shown consistent 
EEG workload patterns across cognitive and 
sensorimotor tasks, supporting the transferability of 
these findings. By training on arithmetic tasks that 
systematically vary in difficulty, we capture MWL-
related neural signatures generalizable to driving 
scenarios, where urban/rural conditions similarly 
modulate cognitive demand.  

Previous research, typically using event-related 
potentials (ERPs) and event-related spectral 
perturbation (ERSP) (e.g., Zhou et al., 2022; Roy et 
al., 2016), faces limitations in generalizing to real-
world, uncontrolled, and realistic environments. This is 
partly because ERPs and ERSP are often tied to 
specific events. In contrast, using spectral markers not 
assigned to specific events offers a significant 
advantage by enabling continuous monitoring. In this 
study, spectral power ratios were extracted from the 
frontal, parietal, and occipital regions after the training 
data were collected and pre-processed. The data was 
then normalized, and a Gaussian Naive Bayes 
classifier was used for training (Grimes et. al., 2008). 
The reason to use the Naive Bayes classifier is its 
simplicity and a small number of parameters that give 
us generalizability, interpretability, and easy 
deployment. Given the noise-prone nature of EEG 
signals and limited labeled data, Naive Bayes offers 
robustness through its probabilistic assumptions and 
low variance, making it well-suited for real-time, 
subject-independent EEG classification. The trained 
model was evaluated in a simulated driving 
environment to assess its potential for real-time MWL 
estimation in operational contexts such as automotive 
applications. 

We will aim to answer the following questions: Can 
real-time, subject-independent EEG measurements in 
a driving simulator reliably detect changes in task 
difficulty and cognitive demands in naturalistic, real-
world environments, given that most prior research in 
this area has focused on subject-dependent methods 
in controlled settings? Furthermore, what are the 
temporal patterns of MWL during tasks of varying 
difficulty, and how do these patterns reflect cognitive 
adaptation and skill automation? 

 
Figure 1: 6-DOF driving simulator with headset 

 

While the effect of practice and task difficulty level on 
mental workload has been investigated, it remains 
unclear; 1) how the temporal dynamics of mental 
workload evolves during a single session under 
varying levels of difficulty, and 2) how these changes 
relate to learning and adaptation at the beginning of a 
task and mental fatigue toward the end of a task.  

We hypothesize that: 1) higher mental workload will be 
observed in an overload scenario, which is more 
difficult, compared to an underload scenario; 2) a 
decreasing trend in mental workload will occur during 
both scenarios due to the learning process; and 3) 
effects of mental fatigue will be observed, with an 
increasing trend in mental workload at the end of the 
overload scenario, indicating that individuals need to 
allocate more cognitive resources and exert greater 
effort to perform the task. 

Methodology 
To investigate mental workload using EEG, we 
required data with reliable ground truth labels. 
Therefore, we first designed a controlled arithmetic 
task experiment that allowed us to define two levels of 
task difficulty explicitly. This setup provided us with 
labeled EEG data suitable for training our model. To 
assess the model's generalizability in a more realistic 
context, we conducted a second experiment using a 
6-DOF driving simulator, see Fig. 1). We designed a 
30-minute scenario that included both rural and urban 
driving segments with respective speed limits and 
traffic signs and usual pedestrian density, see Fig. 2. 
While this dataset does not offer precise, moment-to-
moment labels, the urban driving environment is 
generally associated with higher cognitive demands 
due to factors like traffic lights, pedestrians, and 
increased complexity. In contrast, rural driving is 
typically less mentally demanding. Thus, we used the 
arithmetic task data to train the model and then applied 
it to the driving dataset to evaluate its performance in 
estimating mental workload in a semi-naturalistic 
setting. This approach allowed us to explore how well 
the model could transfer from a well-labeled lab 
environment to a more complex, real-world scenario. 

Arithmetic Experiment 
Twenty volunteers (12 females, 8 males; average age 
= 29.1 years, SD = 3.5) from the local community 
participated. All participants had normal or corrected-
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to-normal vision and no history of neurological 
disorders. Informed consent was obtained from all 
participants, and they were instructed to get sufficient 
sleep and avoid alcohol for 24 hours before the study. 

The EEG was recorded from Cognionics (CGX) Quick-
20r v2 headset, a 21-channel, dry, wireless EEG 
device with sampling rate of 500 Hz at standard 10/20 
locations (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, 
C4, T8, P7, P3, Pz, P4, P8, O1, O2). The electrode 
impedance was maintained below 300 kΩ. The signals 
were recorded using a left earlobe reference electrode 
and then re-referenced offline to the mean of the left 
and right earlobes and filtered with a bandpass of 0.5 
– 40 Hz. 

The experimental design consisted of six blocks with 
two levels of difficulty. The order of presenting levels 
in each block was randomized. Each level's difficulty 
increases based on the number of digits in the 
arithmetic problems presented. In the low mental 
workload condition, participants were required to sum 
up a one-digit number with a one-digit number or a 
two-digit number with a one-digit number. In contrast, 
the high mental workload condition involved summing 
a three-digit number with a three-digit number. Each 
participant had 66 seconds to complete each level, 
with trials separated by a visual cue - a dot displayed 
for two seconds. Following each level, participants 
were given a 15-second break to minimize fatigue and 
maintain focus. The order of difficulty levels was 
randomized for each participant and repeated six 
times throughout the experiment.  

Driving Experiment 
Thirty-two volunteers (6 females, 26 males; average 
age = 25.30 years, SD = 3.36) from the local 
community participated, distinct from the Arithmetic 
experiment's participants. All participants met the 
same rejection criteria as in the Arithmetic experiment 
and had at least 1–2 years of driving experience. 

The EEG was recorded from a Cognionics (CGX) 
Quick-20r v2 headset, an 8-channel, dry, wireless 
EEG device with a sampling rate of 500 Hz at standard 
10/20 locations (Fp1, Fp2, P3, P4, T3, T4, O1, and O2) 
which are a subset available on the CGX Quick-20r v2 
headset. In this task, we used only the electrodes that 
were used for training our model. As in Experiment 1, 
the electrode impedance was kept below 300 kΩ. 
Signals were recorded using a left earlobe reference 
electrode, then re-referenced offline to the average of 
the left and right earlobes and filtered with a 0.5-40 Hz 
bandpass. 

The experimental design includes two driving 
scenarios with a driving simulator categorized into two 
levels of difficulty: overload and underload scenarios. 
The driving simulator is a 6-DOF Stewart platform from 
DoF Reality. The software used for building up and 
simulating the environments and handling the vehicle 
dynamics is CarMaker 13 with the Cockpit Package. 

 

 

Figure 2: The top and bottom images show the driving 
environment in CarMaker 13 for Underload and Overload 

Conditions, respectively 

To avoid misleading learning effects, overload and 
underload scenarios were experienced on separate 
days and presented in a randomized order. The 
Underload scenarios involved driving on a rural, one-
way, straight road with minimal traffic and no 
pedestrians. The Overload scenarios involved driving 
on an urban, two-way road featuring distractions, 
traffic jams, traffic light changes, different road signs, 
and pedestrians crossing, as illustrated in Fig. 2. Each 
scenario lasted 30–45 minutes and began with a 5–
10-minute familiarization period. After completing 
each experimental scenario, participants rated their 
perceived workload using the NASA Task Load Index 
(NASA-TLX) (Hart & Staveland, 1988). Also, they 
rated their overall drowsiness and the nausea level 
immediately following each experimental session 
using a numerical rating scale ranging from 0 to 20, 
where 0 indicated no drowsiness and 20 indicated 

maximal drowsiness.   

Preprocessing 
For both experiments, after collecting the EEG data, a 
critical preprocessing step was undertaken to ensure 
data quality by systematically removing noisy epochs 
caused by artifacts such as muscle movements or eye 
blinks, which could compromise the model's accuracy. 
For this purpose, we epoched the data in 1-second 
intervals. After epoching, we applied several 
techniques to exclude signals containing significant 
artifacts, extreme voltage offsets, flat signals, or bad 
channels. If a channel within an epoch exhibited any 
of these issues, we labeled it as a 'bad channel' for 
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that epoch and excluded it from further analysis 
without discarding the entire epoch. To identify 
extreme voltage offsets and flat signals, we flagged 
and removed channels with peak-to-peak amplitudes 
exceeding 90 μV or falling below 1 μV from 
subsequent analyses. 

To eliminate noisy channels with significant muscle 
artifacts and high noise ratios, which exhibit 
distribution patterns differing from brain signals 
(Fitzgibbon et al., 2016; Barry
Blasio, 2021; Keil et al., 2022; Buzsáki & Mizuseki, 
2014), a linear regression approach was employed to 
model the logarithmically transformed power spectral 
density (PSD) data. Using this approach, we identified 
channels that do not follow the lognormal pattern and 
labeled them as noisy (Fitzgibbon et al., 2016). 

Learning 
We utilized data from the Arithmetic experiment, 
excluding signals with artifacts. After data cleaning, 
the training phase consisted of 8,962 one-second 
epochs (4,872 labeled as overload and 4,090 as 
underload). Each epoch included 19 EEG channels, 
along with a 'bad channel' label indicating whether 
each channel was considered clean (True) or noisy 
(False). 

To reduce noise and capture more stable cognitive 
patterns, we applied a 30-second window across each 
trial. This window length was selected based on prior 
studies indicating that cognitive states such as mental 
workload are more reliably detected over moderately 
long time windows (e.g., 20–60 seconds), as they 
allow for temporal smoothing while maintaining 
responsiveness to changes in cognitive state (Grimes 
et. al., 2008). To expand the dataset and balance the 
classes, we applied a window-level sampling strategy 
that generates an additional 30-second window while 
preserving the original signal characteristics. This 
resulted in a balanced dataset of 11,709 samples 
(5,944 overload and 5,765 underload). 

The data from the Arithmetic experiment was originally 
composed of 19 channels. For each channel, Power 
Spectrum Density (PSD) is calculated, and then the 
average PSD is calculated for frontal, parietal, central, 
and occipital regions. Then, spectral power ratios were 
extracted from the delta, theta, alpha, and beta 
frequency bands. This resulted in a 16-dimensional 
feature vector for each sample. Following data 
normalization, a Gaussian Naive Bayes classifier was 
employed to maintain a low number of parameters 
while ensuring both generalizability and 
interpretability. We employed Leave-One-Subject-Out 
Cross-Validation to evaluate our subject-independent 
model.  

 

 

Figure 3: Confusion matrix of the Arithmetic task using 
LOSOCV 

For the testing phase, we used data from the Driving 
experiment. After systematically excluding segments 
containing artifacts, we ran InnoBrain’s MWL 
prediction model on the dataset for both scenarios 
(overload and underload). The average mental 
workload score was calculated for each 5-minute time 
interval segment in both scenarios. 

At the end, a paired t-test was conducted for each 
segment to evaluate whether InnoBrain’s MWL score 
is sensitive enough to detect differences in workload 
between high-demand and low-demand tasks. Linear 
Regression Analysis was used to assess the temporal 
trend in MWL, addressing patterns of cognitive 
adaptation and skill automation over time. 

Results  
Accuracy, precision, and recall scores were used to 
evaluate the trained model in the Arithmetic 
experiment. Leave-One-Subject-Out Cross-Validation 
(LOSOCV) was used for evaluation to maintain 
subject independence. In this evaluation method, one 
subject is completely removed from training, and then 
the metrics are evaluated for that subject. This process 
is repeated for all subjects, and the average scores are 
then considered as subject-independent scores.  We 
have achieved an average accuracy of 75.4% (SD = 
10.8%) for our binary classifier of high vs. low mental 
workload using LOSOCV. Also, the normalized 
confusion matrix shows 80% precision and 68% recall. 
The confusion matrix is shown in Fig. 3.  

For the Driving experiment, the results of the Paired T-
Test on the NASA-TLX questionnaire indicate that the 
overload scenario was significantly more difficult than 
the underload scenario (t(31) = -3.34, p = 0.002, N = 
32), and participants perceived greater mental 
workload and exerted more effort to perform in the 
overload scenario. 
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Figure 4: Average Mental Workload Score with SEM by 5-
minute time interval for both scenarios 

Due to the non-normal distribution of drowsiness and 
nausea ratings, two Wilcoxon Signed Rank tests were 
conducted to compare participants’ drowsiness and 
nausea levels across scenarios. Results indicated that 
participants reported significantly higher drowsiness 
following the underload scenario compared to the 
overload scenario (Z = -2.20, p = .031, r = -0.40, N = 
33). We did not observe any significant difference in 
nausea levels between the scenarios (Z = 0.4, p = 
0.665, r = 0.1, N = 33). 
Due to the fluctuating mental workload inherent in the 
unsupervised Driving experiment, accuracy cannot be 
precisely measured. However, it is expected that the 
overload scenario would generally yield a higher 
mental workload score, aligning with questionnaire 
results. To investigate this, the model was run on the 
entire time series using a 30-second window 
(consistent with training) and then compared between 
the two scenarios at 5-minute intervals. A Paired T-
Test was employed to compare the mental workload 
scores between the two scenarios, and Linear 
Regression Analysis was used to examine the trend of 
mental workload changes over time. 
Fig. 4 illustrates the average predicted mental 
workload in both scenarios across successive 5-
minute time intervals, with the shaded regions 
representing the Standard Error of the Mean (SEM). 
The SEM indicates the variability of mental workload 
within each time interval, providing insights into the 
precision of the mean estimates. Each point 
corresponds to a time segment, starting from 0–5 
minutes and progressing linearly. Consistent with the 
NASA-TLX questionnaire results, average mental 
workload values in the overload scenario were 
consistently higher across all time segments than in 
the underload scenario, particularly in the first and last 
segments. These differences were significantly 
greater in the overload scenario compared to the 
underload scenario during the first segment (t(28) = -
2.22, p = 0.03, N = 29) and the last segment (t(22) = -
1.98, p = 0.05, N = 23). 
As shown in Fig. 4, a downward trend in average 
mental workload is observed in both scenarios. To 
examine the trend, linear regression analysis was 
conducted on the average MWL scores for each 
scenario. The results of the underload scenario 
indicate a statistically significant decreasing trend, 

with a slope of -0.00044 (p = 0.001). For the overload 
scenario, the decreasing trend has been seen just with 
marginal significance (slope of -0.00078 and p = 0.08) 
due to the increase after 30 minutes.  

Discussion 

Mental workload exhibits a dynamic pattern, 
increasing with task difficulty and mental fatigue while 
decreasing with practice due to the learning effect 
(e.g., Gevins et al., 1997; Jaquess et al., 2018; 
Nakagawa et al., 2013). Our research aimed to detect 
real-time changes in MWL reliably in a subject-
independent and task-independent manner using 
EEG measurements and to determine whether MWL 
trends and temporal patterns could reflect learning 
and mental fatigue in a single session. To achieve this, 
we first trained our model in a controlled laboratory 
environment using an arithmetic task with two levels of 
difficulty. For testing, we employed an uncontrolled, 
more realistic setting involving a driving simulator task, 
also with two levels of difficulty. We hypothesized that: 
1) mental workload would be higher in a difficult 
(overload) scenario than in an easier (underload) one; 
2) workload would decrease in both scenarios due to 
learning; and 3) Mental fatigue tends to increase 
workload in the later stages of an overload scenario 
due to the sustained effort required over time. 
Confirming these hypotheses, the proposed model 
demonstrates a notable capacity to effectively 
measure MWL. It clearly responds to task difficulty and 
captures temporal changes in mental workload during 
learning and mental fatigue in realistic settings. 

Despite the known inter-subject variability in EEG 
signals, our use of spectral power ratios, less affected 
by individual anatomy, and LOSOCV evaluation in the 
Arithmetic experiment highlights a balance between 
generalizability and performance in realistic 
conditions.  

Temporal analysis in the Driving experiment showed 
that the average of MWL in the overload scenario is 
higher than the average of MWL in the underload 
scenario, especially in the first and last segments, 
aligning with NASA-TLX questionnaire responses 
indicating higher perceived workload in the overload 
condition. This supports our hypothesis that MWL is 
greater in more difficult scenarios and confirms our 
model’s sensitivity to task difficulty differences. 

Linear regression analysis indicated a general decline 
in mental workload over time in both the underload and 
overload scenarios. In the underload scenario, this 
decline was fairly consistent across average values. 
Similarly, the overload scenario showed a steady 
reduction in average values during the first 30 minutes. 
This trend suggests that the reduction in the task's 
cognitive demands over time is due to a learning or 
adaptation effect. Initially, the workload was higher 
due to the cognitive demands of learning and 
adaptation, but it declined as proficiency improved, 



DSC 2025 Europe XR Osia et al. 

Stuttgart, 24-26 Sep 2025 - 35 - 

reflecting cognitive adaptation and skill automation 
(Jaquess et al., 2018). 

Furthermore, the subsequent increasing trend 
observed beyond 30 minutes for the overload scenario 
suggests a potential shift in cognitive states due to 
accumulating mental fatigue, emphasizing the need 
for further investigation into the impact of prolonged 
activity on mental workload. This pattern highlights the 
dynamic nature of mental workload over time and 
suggests that prolonged activity leads to increased 
cognitive strain. Mental fatigue negatively impacts 
performance and increases the effort required for 
subsequent activities. To maintain performance 
standards, individuals experiencing mental fatigue 
must reallocate cognitive resources, often requiring 
additional support to achieve their goals effectively 
(Nakagawa et al., 2013). 

Notably, this trend was absent in the underload 
condition, further supporting the interpretation that the 
late-stage workload rise in the overload condition was 
driven by accumulated mental fatigue. Also, the 
observation of lower mental workload in our model, 
alongside higher self-reported drowsiness in the 
underload scenario, aligns with previous findings that 
mental workload tends to decrease during states of 
fatigue or drowsiness (Brookhuis & de Waard, 2010). 

Our approach demonstrates subject independence, as 
it was evaluated on participants distinct from those 
used in training, confirming its ability to generalize 
across individuals. Similarly, task independence was 
achieved by testing the model on activities different 
from those used for training. Its strong performance 
under these conditions underscores its adaptability to 
diverse mental workload demands. Higher scores 
observed for the more challenging task (e.g, Gevins et 
al., 1997) during evaluation align with existing 
literature on learning effects (e.g., Radüntz, 2020) and 
mental fatigue (e.g., Nakagawa et al., 2013), 
suggesting the model not only classifies workload but 
may also capture subtle cognitive states consistent 
with established psychological phenomena. 

Conclusions 

This study confirms the sensitivity of InnoBrain’s MWL 
metric in detecting differences in task difficulty, with a 
higher workload observed in high-demand tasks 
during the initial phase. The downward trend in MWL 
over time reflects cognitive adaptation and skill 
automation, supporting its value for dynamic 
monitoring in real-time scenarios. 

The development and validation of this subject-
independent and task-independent EEG-based model 
represent a significant advancement in MWL 
research, as it eliminates the need for off-line labor-
intensive personalized calibration and expands the 
applicability of cognitive state monitoring across 
diverse populations and environments. By 
successfully applying this model to a simulated driving 

environment, we have demonstrated its robustness 
and scalability, making it a viable tool for industrial 
applications. 

For the scientific community, this work bridges the gap 
between controlled laboratory studies and dynamic, 
real-world settings. It provides a reproducible 
framework for EEG-based workload assessment and 
opens new avenues for understanding temporal 
cognitive patterns, including adaptation and mental 
fatigue. The high sensitivity and practicality of the 
metric position it as a foundational tool for future 
research in human-machine interaction, cognitive 
ergonomics, and adaptive system design. 

For the industrial sector, this research offers 
actionable insights for optimizing user experiences in 
safety-critical applications. Incorporating real-time 
MWL monitoring into system design can improve 
operational safety, reduce cognitive overload, and 
enhance productivity. 

Limitations & Future Works 
Precise labels in naturalistic driving would require 
intrusive secondary tasks; instead, we adopted 
segment-level difficulty labels. Road-scene coding is 
planned to create frame-wise labels. Subject-
independent models typically show a 10–20 pp 
accuracy gap. However, the benefit is zero-calibration 
deployment, and we were expecting this as a trade-
off, but will further develop the algorithm in future 
works. In the future, we will explore instance-based 
transfer (e.g., Riemannian alignment) to reduce 
residual variability. Because MWL is derived from 
global spectral ratios rather than oculomotor artefacts, 
we expect limited sensitivity to head rotation 
compared to a more immersive setup. Future work will 
replicate the protocol in a 270° wrap-around simulator 
and in-vehicle tests. 
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