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Abstract — Real-time monitoring of mental workload (MWL) is critical for designing adaptive human-machine
systems. This study introduces a subject-independent and task-independent EEG classifier trained on spectral power
ratios (delta, theta, alpha, beta) from frontal, parietal, and occipital regions. Using a controlled arithmetic task with
labeled difficulty levels (easy/hard), a Gaussian Naive Bayes model achieved 75.4% accuracy (LOSOCV) in
distinguishing MWL states. Validated in a driving simulator, the model was highly sensitive to task difficulties and
detected higher MWL in urban (overload) vs. rural (underload) scenarios (p < 0.05), aligning with NASA-TLX
subjective ratings. Temporal analysis revealed declining MWL over time in both scenarios, reflecting cognitive
adaptation, followed by a mental fatigue rise in the cumulative effect of prolonged cognitive effort during the overload
scenario. The framework eliminates the need for individualized and task calibration, offering a scalable solution for
real-world applications like automotive safety and virtual reality. By bridging controlled lab settings and naturalistic
environments, this work advances EEG-based MWL monitoring for adaptive systems in high-stakes domains like
driving and aviation.
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simulators, gaming environments, and virtual reality
platforms, but also for monitoring purposes, where
maintaining safety and performance of individuals is
essential. Assessing MWL allows developers to tailor

Introduction

Mental workload (MWL) refers to the mental effort or

resources required to handle the cognitive demands of
a task. As task difficulty increases, cognitive demands
also increase, resulting in a higher MWL (Eggemeier
et al., 1991). Evaluating MWL is crucial for designing
human-machine interfaces that enhance comfort,
satisfaction, efficiency, and safety in respective
working and operating environments. Adjusting task
demands to promote operator safety, health, and
productivity is essential to avoid mismatches between
cognitive resource capacity and task demands (Young
et al., 2015; Rubio et al., 2004). In this study, we aim
to assess the temporal patterns of mental workload in
real-time, using an unconstrained
Electroencephalogram (EEG) classifier, which
provides insights into the mechanisms of learning and
adaptation and the progression of mental fatigue over
time.

Monitoring MWL in real-time is essential not only for
advancing technology development, as it directly
influences the design of systems such as driving
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user experiences that align with cognitive demands,
ensuring systems are intuitive, engaging, and
effective. This understanding is particularly valuable in
applications where user performance and safety are
critical. For instance, in driving simulators, insights into
MWL can guide the development of adaptive training
environments that respond to users' cognitive states.
Additionally, monitoring MWL in real-time can
enhance safety features in driving scenarios by
alerting drivers. Many traffic accidents are associated
with mental workload, as high MWL can slow reaction
times and reduce accuracy, whereas low MWL can
result in distractions and inattention (Brookhuis & de
Waard, 2010; Makishita & Matsunaga, 2008; Paxion
et al., 2014).

Furthermore, the temporal patterns of mental
workload offer valuable insights. It is closely related to
learning and mental fatigue. Mental workload
decreases after a single practice session due to the
effects of the learning process (Gevins et al., 1997;
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Jaquess et al., 2018; Brookings et al., 1996; Haufler et
al., 2000; Kerick et al., 2004). As learning progresses
and a task becomes more familiar, mental workload
gradually decreases (Raduntz, 2020). This refinement
in how mental resources are engaged aligns with Fitts
and Posner’s model, which describes a transition from
controlled processing to more automatic processing
as skills develop, accompanied by a reduction in the
mental effort required to perform the task (Fitts &
Posner, 1967). In contrast, prolonged engagement in
cognitively demanding tasks can lead to mental
fatigue, which is accompanied by an increase in
mental workload. In this state, individuals often
compensate for reduced performance by exerting
additional effort and reallocating cognitive resources,
which can, in turn, increase mental workload (Mahdavi
et al., 2024; Nakagawa et al., 2013).

There are three primary ways to assess MWL:
performance-based measures, subjective measures,
and physiological measures. Performance-based
measures quantify behavioral metrics, including task
completion time and error rate. However, they have
limitations, including a lack of sensitivity to changes in
mental workload levels. Performance may remain
consistent even when mental workload increases,
leading to inaccurate assessments. Subjective
measures rely on individuals reporting their perceived
workload using questionnaires like the NASA Task
Load Index. This method is easy and widely used, but
does not provide real-time information. Among these,
physiological measures uniquely offer objective, real-
time assessments of MWL by tracking physiological
responses, such as heart rate and brain activity,
without interfering with task performance (Meshkati et
al., 1995). Between these physiological
measurements that assess MWL, only the EEG
accurately reflects workload in real-time, allowing for
second-by-second measurement (Berka et al. 2007).
Furthermore, EEG's direct measurement of brain
activity makes it the most direct indicator of different
cognitive states among physiological measures
(Debie et al., 2019).

EEG & Mental Workload

There is a well-established body of literature on
assessing mental workload using EEG. Generally,
changes in task demands have been shown to
correspond with alterations in EEG frequencies
(Charles & Nixon, 2019). Specifically, a decrease in
alpha band activity in the posterior region has been
identified as a reliable indicator of higher mental
workload. Additionally, theta power has been
observed to increase significantly with greater task
difficulty, particularly at anterior sites (Gevins et al.,
1997; Smith et al., 1999; Jaquess et al., 2018; Di
Flumeri et al., 2018; Borghini et al., 2014; Smith &
Gevins, 2005; Brookings et al., 1996; Wilson, 2002).
These findings are consistent across a variety of tasks,
from controlled laboratory settings involving arithmetic
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tasks to real-world environments with aircraft pilots
and car drivers. This aligns with the understanding that
alpha activity is inversely related to general arousal
and attentional processes, while frontal theta power is
positively  associated with  working memory
engagement and conscious control over attention
(Smith et al., 1999; Jaquess et al.,, 2018). This
suggests that, despite differences in task type, mental
workload relies on a common neural infrastructure
across diverse tasks.

In parallel with traditional spectral analysis, recent
years have seen a growing use of machine learning
(ML) techniques to estimate mental workload from
EEG data. These approaches aim to move beyond
fixed frequency-based heuristics by automatically
learning patterns from data. A critical challenge in this
domain is subject dependency and task dependency.
Most ML models show significantly better performance
when trained and tested on data from the same
subject (subject-dependent models), as they can
exploit individual-specific EEG features (Roy et al.,
2016; Kingphai & Moshfeghi, 2024). However, this
restricts the general applicability of such models,
particularly in practical scenarios like driving, where
pre-training on every new user is infeasible. On the
other hand, subject-independent models—those
trained across a group of individuals and tested on
unseen subjects—often suffer a noticeable drop in
accuracy due to inter-subject variability in anatomy,
neural responses, and cognitive strategies (Zheng &
Lu, 2015; Zhou et al., 2022). This variability is a well-
documented limitation in EEG-based analysis. It
presents a key difference from traditional methods,
which often rely on population-level heuristics like
increased frontal theta or decreased posterior alpha
without being sensitive to individual-level variability.

To address this, researchers have explored domain
adaptation, transfer learning, and personalized
calibration techniques. For example, approaches that
combine general features like spectral power ratios
with data-driven features have shown promise in
improving  cross-subject  generalization ~ while
preserving interpretability (Roy et al., 2016; Zhang et
al., 2018). Nonetheless, ML-based models still face
trade-offs between flexibility, transparency, and
robustness. Unlike traditional EEG metrics that are
relatively interpretable but less adaptive, ML models
offer enhanced performance potential but often act as
black boxes, making them harder to deploy in
regulated or safety-critical environments like
automotive settings.

Contribution

While personalized models can offer highly accurate
classifications of cognitive states, their deployment in
real-world settings is often impractical. This is primarily
due to the time and resources required to collect
individualized training data and develop complex
subject-specific models. In contrast, this study focuses
on evaluating the reproducibility and sensitivity of the
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MWL assessment using EEG signals within a subject-
independent and task-independent model applied to

uncontrolled environments.

To this end, we first designed a controlled scenario
based on an arithmetic task specifically chosen for its
ability to elicit distinct levels of mental workload. Task
demands were systematically manipulated to induce
variations in cognitive load, and participants provided
subjective ratings of perceived difficulty and effort to
assist with accurate labeling and model validation. The
training phase included two defined difficulty levels—
easy and hard—intended to reliably produce differing
MWL states. While arithmetic tasks and driving differ
in nature, both reliably engage the working memory
and attention system. Prior studies (e.g., Gevins et al.,
1997; Borghini et al., 2014) have shown consistent
EEG workload patterns across cognitive and
sensorimotor tasks, supporting the transferability of
these findings. By training on arithmetic tasks that
systematically vary in difficulty, we capture MWL-
related neural signatures generalizable to driving
scenarios, where urban/rural conditions similarly
modulate cognitive demand.

Previous research, typically using event-related
potentials (ERPs) and event-related spectral
perturbation (ERSP) (e.g., Zhou et al., 2022; Roy et
al.,, 2016), faces limitations in generalizing to real-
world, uncontrolled, and realistic environments. This is
partly because ERPs and ERSP are often tied to
specific events. In contrast, using spectral markers not
assigned to specific events offers a significant
advantage by enabling continuous monitoring. In this
study, spectral power ratios were extracted from the
frontal, parietal, and occipital regions after the training
data were collected and pre-processed. The data was
then normalized, and a Gaussian Naive Bayes
classifier was used for training (Grimes et. al., 2008).
The reason to use the Naive Bayes classifier is its
simplicity and a small number of parameters that give
us generalizability, interpretability, and easy
deployment. Given the noise-prone nature of EEG
signals and limited labeled data, Naive Bayes offers
robustness through its probabilistic assumptions and
low variance, making it well-suited for real-time,
subject-independent EEG classification. The trained
model was evaluated in a simulated driving
environment to assess its potential for real-time MWL
estimation in operational contexts such as automotive
applications.

We will aim to answer the following questions: Can
real-time, subject-independent EEG measurements in
a driving simulator reliably detect changes in task
difficulty and cognitive demands in naturalistic, real-
world environments, given that most prior research in
this area has focused on subject-dependent methods
in controlled settings? Furthermore, what are the
temporal patterns of MWL during tasks of varying
difficulty, and how do these patterns reflect cognitive
adaptation and skill automation?
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Figljre 1: 6-DOF driving simulator with hedset

While the effect of practice and task difficulty level on
mental workload has been investigated, it remains
unclear; 1) how the temporal dynamics of mental
workload evolves during a single session under
varying levels of difficulty, and 2) how these changes
relate to learning and adaptation at the beginning of a
task and mental fatigue toward the end of a task.

We hypothesize that: 1) higher mental workload will be
observed in an overload scenario, which is more
difficult, compared to an underload scenario; 2) a
decreasing trend in mental workload will occur during
both scenarios due to the learning process; and 3)
effects of mental fatigue will be observed, with an
increasing trend in mental workload at the end of the
overload scenario, indicating that individuals need to
allocate more cognitive resources and exert greater
effort to perform the task.

Methodology

To investigate mental workload using EEG, we
required data with reliable ground truth labels.
Therefore, we first designed a controlled arithmetic
task experiment that allowed us to define two levels of
task difficulty explicitly. This setup provided us with
labeled EEG data suitable for training our model. To
assess the model's generalizability in a more realistic
context, we conducted a second experiment using a
6-DOF driving simulator, see Fig. 1). We designed a
30-minute scenario that included both rural and urban
driving segments with respective speed limits and
traffic signs and usual pedestrian density, see Fig. 2.
While this dataset does not offer precise, moment-to-
moment labels, the urban driving environment is
generally associated with higher cognitive demands
due to factors like traffic lights, pedestrians, and
increased complexity. In contrast, rural driving is
typically less mentally demanding. Thus, we used the
arithmetic task data to train the model and then applied
it to the driving dataset to evaluate its performance in
estimating mental workload in a semi-naturalistic
setting. This approach allowed us to explore how well
the model could transfer from a well-labeled lab
environment to a more complex, real-world scenario.

Arithmetic Experiment

Twenty volunteers (12 females, 8 males; average age
= 29.1 years, SD = 3.5) from the local community
participated. All participants had normal or corrected-
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to-normal vision and no history of neurological
disorders. Informed consent was obtained from all
participants, and they were instructed to get sufficient
sleep and avoid alcohol for 24 hours before the study.

The EEG was recorded from Cognionics (CGX) Quick-
20r v2 headset, a 21-channel, dry, wireless EEG
device with sampling rate of 500 Hz at standard 10/20
locations (Fpl, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz,
C4, T8, P7, P3, Pz, P4, P8, 01, 02). The electrode
impedance was maintained below 300 kQ. The signals
were recorded using a left earlobe reference electrode
and then re-referenced offline to the mean of the left
and right earlobes and filtered with a bandpass of 0.5
— 40 Hz.

The experimental design consisted of six blocks with
two levels of difficulty. The order of presenting levels
in each block was randomized. Each level's difficulty
increases based on the number of digits in the
arithmetic problems presented. In the low mental
workload condition, participants were required to sum
up a one-digit number with a one-digit number or a
two-digit number with a one-digit number. In contrast,
the high mental workload condition involved summing
a three-digit number with a three-digit number. Each
participant had 66 seconds to complete each level,
with trials separated by a visual cue - a dot displayed
for two seconds. Following each level, participants
were given a 15-second break to minimize fatigue and
maintain focus. The order of difficulty levels was
randomized for each participant and repeated six
times throughout the experiment.

Driving Experiment

Thirty-two volunteers (6 females, 26 males; average
age = 25.30 years, SD = 3.36) from the local
community participated, distinct from the Arithmetic
experiment's participants. All participants met the
same rejection criteria as in the Arithmetic experiment
and had at least 1-2 years of driving experience.

The EEG was recorded from a Cognionics (CGX)
Quick-20r v2 headset, an 8-channel, dry, wireless
EEG device with a sampling rate of 500 Hz at standard
10/20 locations (Fpl, Fp2, P3, P4, T3, T4, O1, and O2)
which are a subset available on the CGX Quick-20r v2
headset. In this task, we used only the electrodes that
were used for training our model. As in Experiment 1,
the electrode impedance was kept below 300 kQ.
Signals were recorded using a left earlobe reference
electrode, then re-referenced offline to the average of
the left and right earlobes and filtered with a 0.5-40 Hz
bandpass.

The experimental design includes two driving
scenarios with a driving simulator categorized into two
levels of difficulty: overload and underload scenarios.
The driving simulator is a 6-DOF Stewart platform from
DoF Reality. The software used for building up and
simulating the environments and handling the vehicle
dynamics is CarMaker 13 with the Cockpit Package.
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Figure 2: The top and bottom images show the driving
environment in CarMaker 13 for Underload and Overload
Conditions, respectively

To avoid misleading learning effects, overload and
underload scenarios were experienced on separate
days and presented in a randomized order. The
Underload scenarios involved driving on a rural, one-
way, straight road with minimal traffic and no
pedestrians. The Overload scenarios involved driving
on an urban, two-way road featuring distractions,
traffic jams, traffic light changes, different road signs,
and pedestrians crossing, as illustrated in Fig. 2. Each
scenario lasted 30—45 minutes and began with a 5—
10-minute familiarization period. After completing
each experimental scenario, participants rated their
perceived workload using the NASA Task Load Index
(NASA-TLX) (Hart & Staveland, 1988). Also, they
rated their overall drowsiness and the nausea level
immediately following each experimental session
using a numerical rating scale ranging from 0 to 20,
where 0 indicated no drowsiness and 20 indicated

maximal drowsiness.

Preprocessing

For both experiments, after collecting the EEG data, a
critical preprocessing step was undertaken to ensure
data quality by systematically removing noisy epochs
caused by artifacts such as muscle movements or eye
blinks, which could compromise the model's accuracy.
For this purpose, we epoched the data in 1-second
intervals. After epoching, we applied several
techniques to exclude signals containing significant
artifacts, extreme voltage offsets, flat signals, or bad
channels. If a channel within an epoch exhibited any
of these issues, we labeled it as a 'bad channel' for
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that epoch and excluded it from further analysis
without discarding the entire epoch. To identify
extreme voltage offsets and flat signals, we flagged
and removed channels with peak-to-peak amplitudes
exceeding 90 pV or faling below 1 pV from
subsequent analyses.

To eliminate noisy channels with significant muscle
artifacts and high noise ratios, which exhibit
distribution patterns differing from brain signals
(Fitzgibbon et al., 2016; Barry &
Blasio, 2021; Keil et al., 2022; Buzsaki & Mizuseki,
2014), a linear regression approach was employed to
model the logarithmically transformed power spectral
density (PSD) data. Using this approach, we identified
channels that do not follow the lognormal pattern and
labeled them as noisy (Fitzgibbon et al., 2016).

Learning

We utilized data from the Arithmetic experiment,
excluding signals with artifacts. After data cleaning,
the training phase consisted of 8,962 one-second
epochs (4,872 labeled as overload and 4,090 as
underload). Each epoch included 19 EEG channels,
along with a 'bad channel' label indicating whether
each channel was considered clean (True) or noisy
(False).

To reduce noise and capture more stable cognitive
patterns, we applied a 30-second window across each
trial. This window length was selected based on prior
studies indicating that cognitive states such as mental
workload are more reliably detected over moderately
long time windows (e.g., 2060 seconds), as they
allow for temporal smoothing while maintaining
responsiveness to changes in cognitive state (Grimes
et. al., 2008). To expand the dataset and balance the
classes, we applied a window-level sampling strategy
that generates an additional 30-second window while
preserving the original signal characteristics. This
resulted in a balanced dataset of 11,709 samples
(5,944 overload and 5,765 underload).

The data from the Arithmetic experiment was originally
composed of 19 channels. For each channel, Power
Spectrum Density (PSD) is calculated, and then the
average PSD is calculated for frontal, parietal, central,
and occipital regions. Then, spectral power ratios were
extracted from the delta, theta, alpha, and beta
frequency bands. This resulted in a 16-dimensional
feature vector for each sample. Following data
normalization, a Gaussian Naive Bayes classifier was
employed to maintain a low number of parameters
while ensuring both generalizability and
interpretability. We employed Leave-One-Subject-Out
Cross-Validation to evaluate our subject-independent
model.
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Figure 3: Confusion matrix of the Arithmetic task using
LOsOCV

For the testing phase, we used data from the Driving
experiment. After systematically excluding segments
containing artifacts, we ran InnoBrain’'s MWL
prediction model on the dataset for both scenarios
(overload and underload). The average mental
workload score was calculated for each 5-minute time
interval segment in both scenarios.

At the end, a paired t-test was conducted for each
segment to evaluate whether InnoBrain’s MWL score
is sensitive enough to detect differences in workload
between high-demand and low-demand tasks. Linear
Regression Analysis was used to assess the temporal
trend in MWL, addressing patterns of cognitive
adaptation and skill automation over time.

Results

Accuracy, precision, and recall scores were used to
evaluate the trained model in the Arithmetic
experiment. Leave-One-Subject-Out Cross-Validation
(LOSOCV) was used for evaluation to maintain
subject independence. In this evaluation method, one
subject is completely removed from training, and then
the metrics are evaluated for that subject. This process
is repeated for all subjects, and the average scores are
then considered as subject-independent scores. We
have achieved an average accuracy of 75.4% (SD =
10.8%) for our binary classifier of high vs. low mental
workload using LOSOCV. Also, the normalized
confusion matrix shows 80% precision and 68% recall.
The confusion matrix is shown in Fig. 3.

For the Driving experiment, the results of the Paired T-
Test on the NASA-TLX questionnaire indicate that the
overload scenario was significantly more difficult than
the underload scenario (t(31) = -3.34, p = 0.002, N =
32), and participants perceived greater mental
workload and exerted more effort to perform in the
overload scenario.
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Figure 4: Average Mental Workload Score with SEM by 5-
minute time interval for both scenarios

Due to the non-normal distribution of drowsiness and
nausea ratings, two Wilcoxon Signed Rank tests were
conducted to compare participants’ drowsiness and
nausea levels across scenarios. Results indicated that
participants reported significantly higher drowsiness
following the underload scenario compared to the
overload scenario (Z = -2.20, p =.031, r =-0.40, N =
33). We did not observe any significant difference in
nausea levels between the scenarios (Z = 0.4, p =
0.665,r=0.1, N = 33).

Due to the fluctuating mental workload inherent in the
unsupervised Driving experiment, accuracy cannot be
precisely measured. However, it is expected that the
overload scenario would generally yield a higher
mental workload score, aligning with questionnaire
results. To investigate this, the model was run on the
entire time series using a 30-second window
(consistent with training) and then compared between
the two scenarios at 5-minute intervals. A Paired T-
Test was employed to compare the mental workload
scores between the two scenarios, and Linear
Regression Analysis was used to examine the trend of
mental workload changes over time.

Fig. 4 illustrates the average predicted mental
workload in both scenarios across successive 5-
minute time intervals, with the shaded regions
representing the Standard Error of the Mean (SEM).
The SEM indicates the variability of mental workload
within each time interval, providing insights into the
precision of the mean estimates. Each point
corresponds to a time segment, starting from 0-5
minutes and progressing linearly. Consistent with the
NASA-TLX questionnaire results, average mental
workload values in the overload scenario were
consistently higher across all time segments than in
the underload scenario, particularly in the first and last
segments. These differences were significantly
greater in the overload scenario compared to the
underload scenario during the first segment (t(28) = -
2.22, p =0.03, N = 29) and the last segment (t(22) = -
1.98, p = 0.05, N = 23).

As shown in Fig. 4, a downward trend in average
mental workload is observed in both scenarios. To
examine the trend, linear regression analysis was
conducted on the average MWL scores for each
scenario. The results of the underload scenario
indicate a statistically significant decreasing trend,
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with a slope of -0.00044 (p = 0.001). For the overload
scenario, the decreasing trend has been seen just with
marginal significance (slope of -0.00078 and p = 0.08)
due to the increase after 30 minutes.

Discussion

Mental workload exhibits a dynamic pattern,
increasing with task difficulty and mental fatigue while
decreasing with practice due to the learning effect
(e.g., Gevins et al., 1997; Jaquess et al.,, 2018;
Nakagawa et al., 2013). Our research aimed to detect
real-time changes in MWL reliably in a subject-
independent and task-independent manner using
EEG measurements and to determine whether MWL
trends and temporal patterns could reflect learning
and mental fatigue in a single session. To achieve this,
we first trained our model in a controlled laboratory
environment using an arithmetic task with two levels of
difficulty. For testing, we employed an uncontrolled,
more realistic setting involving a driving simulator task,
also with two levels of difficulty. We hypothesized that:
1) mental workload would be higher in a difficult
(overload) scenario than in an easier (underload) one;
2) workload would decrease in both scenarios due to
learning; and 3) Mental fatigue tends to increase
workload in the later stages of an overload scenario
due to the sustained effort required over time.
Confirming these hypotheses, the proposed model
demonstrates a notable capacity to effectively
measure MW.L. It clearly responds to task difficulty and
captures temporal changes in mental workload during
learning and mental fatigue in realistic settings.

Despite the known inter-subject variability in EEG
signals, our use of spectral power ratios, less affected
by individual anatomy, and LOSOCYV evaluation in the
Arithmetic experiment highlights a balance between
generalizability and performance in realistic
conditions.

Temporal analysis in the Driving experiment showed
that the average of MWL in the overload scenario is
higher than the average of MWL in the underload
scenario, especially in the first and last segments,
aligning with NASA-TLX questionnaire responses
indicating higher perceived workload in the overload
condition. This supports our hypothesis that MWL is
greater in more difficult scenarios and confirms our
model’s sensitivity to task difficulty differences.

Linear regression analysis indicated a general decline
in mental workload over time in both the underload and
overload scenarios. In the underload scenario, this
decline was fairly consistent across average values.
Similarly, the overload scenario showed a steady
reduction in average values during the first 30 minutes.
This trend suggests that the reduction in the task's
cognitive demands over time is due to a learning or
adaptation effect. Initially, the workload was higher
due to the cognitive demands of learning and
adaptation, but it declined as proficiency improved,
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reflecting cognitive adaptation and skill automation
(Jaquess et al., 2018).

Furthermore, the subsequent increasing trend
observed beyond 30 minutes for the overload scenario
suggests a potential shift in cognitive states due to
accumulating mental fatigue, emphasizing the need
for further investigation into the impact of prolonged
activity on mental workload. This pattern highlights the
dynamic nature of mental workload over time and
suggests that prolonged activity leads to increased
cognitive strain. Mental fatigue negatively impacts
performance and increases the effort required for
subsequent activities. To maintain performance
standards, individuals experiencing mental fatigue
must reallocate cognitive resources, often requiring
additional support to achieve their goals effectively
(Nakagawa et al., 2013).

Notably, this trend was absent in the underload
condition, further supporting the interpretation that the
late-stage workload rise in the overload condition was
driven by accumulated mental fatigue. Also, the
observation of lower mental workload in our model,
alongside higher self-reported drowsiness in the
underload scenario, aligns with previous findings that
mental workload tends to decrease during states of
fatigue or drowsiness (Brookhuis & de Waard, 2010).

Our approach demonstrates subject independence, as
it was evaluated on participants distinct from those
used in training, confirming its ability to generalize
across individuals. Similarly, task independence was
achieved by testing the model on activities different
from those used for training. Its strong performance
under these conditions underscores its adaptability to
diverse mental workload demands. Higher scores
observed for the more challenging task (e.g, Gevins et
al., 1997) during evaluation align with existing
literature on learning effects (e.g., Radintz, 2020) and
mental fatigue (e.g., Nakagawa et al., 2013),
suggesting the model not only classifies workload but
may also capture subtle cognitive states consistent
with established psychological phenomena.

Conclusions

This study confirms the sensitivity of InnoBrain’s MWL
metric in detecting differences in task difficulty, with a
higher workload observed in high-demand tasks
during the initial phase. The downward trend in MWL
over time reflects cognitive adaptation and skill
automation, supporting its value for dynamic
monitoring in real-time scenarios.

The development and validation of this subject-
independent and task-independent EEG-based model
represent a significant advancement in MWL
research, as it eliminates the need for off-line labor-
intensive personalized calibration and expands the
applicability of cognitive state monitoring across
diverse  populations and environments. By
successfully applying this model to a simulated driving
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environment, we have demonstrated its robustness
and scalability, making it a viable tool for industrial
applications.

For the scientific community, this work bridges the gap
between controlled laboratory studies and dynamic,
real-world settings. It provides a reproducible
framework for EEG-based workload assessment and
opens new avenues for understanding temporal
cognitive patterns, including adaptation and mental
fatigue. The high sensitivity and practicality of the
metric position it as a foundational tool for future
research in human-machine interaction, cognitive
ergonomics, and adaptive system design.

For the industrial sector, this research offers
actionable insights for optimizing user experiences in
safety-critical applications. Incorporating real-time
MWL monitoring into system design can improve
operational safety, reduce cognitive overload, and
enhance productivity.

Limitations & Future Works

Precise labels in naturalistic driving would require
intrusive secondary tasks; instead, we adopted
segment-level difficulty labels. Road-scene coding is
planned to create frame-wise labels. Subject-
independent models typically show a 10-20 pp
accuracy gap. However, the benefit is zero-calibration
deployment, and we were expecting this as a trade-
off, but will further develop the algorithm in future
works. In the future, we will explore instance-based
transfer (e.g., Riemannian alignment) to reduce
residual variability. Because MWL is derived from
global spectral ratios rather than oculomotor artefacts,
we expect limited sensitivity to head rotation
compared to a more immersive setup. Future work will
replicate the protocol in a 270° wrap-around simulator
and in-vehicle tests.
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